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INTRODUCTION

We consider the Fourier expansion

f(x) ""' L cneinx = L an(x)
-CfJ n=O

at a point of continuity, say x = O. It is well known that the partial sums of
the series L::~o an(O) are o(log n), and that the series is summable by certain
matrix methods (e.g., C1 , by Fejer's theorem) which are called Fourier
effective (see definition in Section 1). In this paper we ask how much infor
mation is contained in the totality of all of these summability properties;
in other words, we shall try to describe the intersection of the corresponding
summability fields.

The series L::~o an(O) under consideration form a class Fe, and the summa
bility field of an effective method B will be denoted by (B). We prove
(Theorem 2.1) that

i.e., that Fe can be characterized in terms of summability if we allow all
effective methods. These include also nonregular methods, and we shall
characterize them completely by properties of their kernels (Theorem 1.1).

There is a class of effective methods which are much better understood, and
which we shall call monotone methods (Section 3). In the triangular case,
Nikol'skiI [5] has completely characterized these methods by properties of
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232 JURKAT AND PEYERIMHOFF

the matrix elements (see Theorem 1.2). Again we ask for an explicit
description of

n(A) = (L1*),

where we allow for A all effective monotone methods. It is the main result of
this paper that (L1*) can be defined directly, and in comparatively simple
terms, through a certain summability method which will also be denoted
by L 1*. Since most methods ever used in this connection are either monotone
or closely related to monotone ones practically all the information on
summability known so far is contained in the theory of L 1*. For this reason,
it will be of interest to prove L1*-summability directly (Theorem 4.1). From
the explicit definition it appears that L1*-summability of {sn} lies somewhere
between the order-restriction Sn = o(log n) and C1-summability; hence the
name "order summability" for it. Actually, L 1* is equivalent to some
monotone method (see Theorem 5.1) which simplifies the logical interrelation
to a great extent. This and further implications will be discussed in Sections 5
and 6.

From the point of view of summability, effectiveness is closely related to
inclusion theorems. In order to distinguish clearly between theorems
concerning Fourier series and theorems which are of general interest in the
summability theory, we have postponed the detailed study of these inclusion
theorems to a paper following this ("Inclusion theorems and Order
Summability"). Some results of this second paper will be used, however, in
the discussion of implications in Section 6 of the present article.

1. FOURIER EFFECTIVENESS

LetjE L[-77', 77'] have the Fourier expansion

00 00 00

f(x) ""' L: cneinx == Co + L: (cneinX + ene-inx) == L: an(x).
~OO n=l n=O

The summability behavior of this series at a given point x is related to
properties of cpit) = t(f(x + t) + f(x - t» E L[O, 77'] at t = 0, by virtue of
the cosine-expansion

cpit) ""' L an(x) cos nt.
n=O

By Fc we denote the class of all series L an(x) for which cpit) is continuous
at t = 0, i.e., Hj(x + t) + f(x - t» ~ CPx(O) = f(x) as t~ 0. Similarly,
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FL is the class of all series L an(x) for which t = °is an L-point of rpx , i.e.,
S: I rpx(t) - rpx(O)Idt = o(h) as h ---+ +0. Here x is to be considered as
arbitrary but fixed, and will often be omitted. Thus, the class Fe (FL) consists
of all the series L an for which L an cos nt is the cosine-expansion of a
function rp E L[O, 7T] having t = °as point of continuity (as an L-point).

We consider summability methods B = (bnv) in the series-to-sequence
form satisfying

(n ---+ 00, v fixed),

(n fixed, v ---+ 00).

(1.1)

(1.2)

(A method satisfying (1.1) and (1.2) need not be regular.) Further, we require
that an(rp) = L:=o bnvav (n = 0, 1,...) is well defined (in some sense) for all
series in Fe , resp. in FL' It turns out that it is convenient to require here
C1-summability of L bnvav , i.e.,

00

an(rp) = L bnvav(C1),

v=o
n = 0, 1, ... , (1.3)

for all series in Fe , resp. in FL . This is the applicability condition. Finally,
we require that

(n ---+ (0) (1.4)

for all rp corresponding to series in Fe, resp. FL' This is the summability
condition (we note that (1.1) is a consequence of (1.4». We write L av = s (B)
to indicate applicability and summability to s.

A method B satisfying (1.1), (1.2), (1.3) and (1.4) is called Fourier-effective,
more precisely, Fe-effective, resp. Fceffective. (It would be possible to define
other types of effectiveness based upon a different local behavior of rp.)

The following theorem gives a characterization of Fe-effective methods.

THEOREM 1.1. A method B = (bnv) is Fe-effective if and only if
00

tbno + L bnv cos vt
v=l

(n = 0, 1,...)

are the cosine-expansions of functions (kernels) bn E L[O, T] satisfying for
every S, °< 0 < 7T:

ess. sup Ibn(t)I ~ M 8 (n = 0, 1,...), (1.5)
tE[8.1T]

s: Ibn(t)Idt ~ M (n = 0, 1,...), (1.6)

f 7T b.,(t) dt ---+ 0, ~ f7T bn(t) dt ---+ 1 (n ---+ 00). (1.7)
8 7T 0
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A corresponding result for Fceffectiveness is not known in this generality.
Since Fc C FL , trivially Fceffectiveness implies Fc-effectiveness. In particular,
(1.6) is a necessary condition for Fourier-effectiveness. If B is regular, then
(1.5) and (1.7) are automatically satisfied, and this case of Theorem 1.1 is
known (see [1, Chapter VII, Section 2; 7, rn, Section 2; 2]). Later on,
however, we shall need Theorem 1.1 in its full generality.

Proof Suppose that B is Fc-effective, and let first ({J E qo, 7T]. Since Gv

depends linearly and continuously upon ({J, so does un«({J) by Banach's limit
theorem. Hence, there exists Bn E V[O, 7T] such that

n = 0, 1,....

Here Bn(t) may be normalized by Bit) = Bn(t - 0) for t E (0, 7T). If we take
({J E L1[S, 7T] with the trivial extension ({J = °on [0, S), ui({J) is again linear
and continuous and hence of the form

2 fITUn«({J) = -:;; ~ ((J(t) bn.~(t) dt,

If ({J E qs, 7T], ((J(S) = 0, we have both

2 fIT 2 I"Un«({J) = - ((J(t) dBit) = - ((J(t) bn,a{t) dt;
7T ~ 7T ~

hence
t

Bit) = Cn.~ + I~ bn.ix) dx,

Since 8 E (0, 7T) is arbitrary, we conclude

Bn is absolutely continuous on (0, 7T],

Bn' = bn E L oo [8, 7T] and E L1[0, 7T],

t E (8, 7T].

({J E qo, 7T], (1.8)

(1.9)

From the convergence un«({J) ->- ((J(O) it follows by the Banach-Steinhaus
theorem that, for n ->- 00,

1: I bn(t)1 dt = 0(1),

ess. sup I bn(t) I = 0(1).
tE[Il.1r]
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Also, from (1.9) it follows directly that

5: bn(t) dt = 0(1).

For rp(t) = cos vt it follows from (1.8) that

2 ITTbnv = Cn +- bn(t) cos vt dt.
TT 0

Letting v ---+ 00, we find Cn = °because of (1.2). Thus bn is the kernel as
explained in Theorem 1.1, and (1.8) yields

2 ITT- bn(t) dt ---+ 1.
TT 0

This shows that the conditions of Theorem 1.1 are necessary.
Conversely, suppose that the kernel bn has the properties (1.5), (1.6) and

(1.7). Let rp E L 1[0, TT] be continuous at t = 0 so that, in particular,
rp E Loo[O, 00], Consider the Ccmeans of its cosine-expansion:

and note that for fixed 01 E (0, 00) and k ---+ 00,

sup I rpk(t) I = 0(1),
tE[0.5,]

rI rpT/t) - rp(t)j dt ---+ 0,
o

rpk(t) ---+ rp(t) almost everywhere.

By Lebesgue's theorem on dominated convergence on [0, od and by trivial
estimates on [01 , TT] it follows that, for k ---+ 00,

k ( V) 2 IT( 2 IT(
~o 1 - k + 1 bnvav = -;; 0 rpk(t) bit) dt ---+ -;; 0 rp(t) bit) dt,

in view of (1.5) and (1.6). Thus, we have a "mixed" case ofParseval's formula

which is the applicability condition. The summability condition now follows
by standard arguments. Condition (1.1) is the special case of (1.4) with
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rp(t) = cos vt, while (1.2) follows from the fact that bnv are Fourier
coefficients. Hence B is Fe-effective.

Besides the characterization of Fe-effective methods by properties of the
kernel it seems desirable also to characterize effectiveness in terms of the
matrix elements bnv • In this direction the following result is useful.

THEOREM 1.2. If B is Fe-effective (or FL-effective), then

(n = 0, I,... ; k = 1,2,...) (1.10)

with a constant M independent ofnand k.

Proof Let

k I k sin mt
Pk(t) = L - {cos(k - m)t - cos(k + m)t} = 2 sin kt L --.

~m ~ m

Since h(t) is uniformly bounded in k and t, we obtain from (1.6),

2k b 2 7T

v~ k nv v = --:; f0 h(t) bn(t) dt = 0(1),

v*k

which proves the theorem.
If B is triangular, then it follows from (1.10), for k = n + 1, that

n = 0,1,... (1.11)

(see [5]).

2. THE INTERSECTION OF SUMMABILITY FIELDS OF ALL Fe·EFFECTIVE METHODS

THEOREM 2.1. Let L av be summable to (the same) s by all Fe-effective
methods B. Then

00

L av cos vt
v=o

is the cosine-expansion ofa function rp E L1[0, 7T] which is continuous at t = 0,
rp(O) = s. In other words, the series belongs to Fe .
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This theorem shows that the class Fe is completely characterized by
summability properties. It follows that Fe-effectiveness is not the same as
FL-effectiveness, in general.

Proof Fix the series L an and consider only kernels bn E qo, TT]. Take
an arbitrary b E C[O, TT] with a cosine-expansion

00

bet) ""' tbo + L bvcos vt.
v=l

Suppose that B (with kernel bn) is Fe-effective. If we replace bo by b and leave
bn (n ;;e: 1) unaltered, then the new method is Fe-effective (conditions (1.5),
(1.6) and (1.7) remain true). Hence, by applicability and Banach's limit
theorem,

00

a(b) = L bvav (Cl )
v=o

(2.1)

is a continuous linear functional of b E qo, TT] and, therefore, of the form

a(b) = 3- f7t bet) difJ(t), ifJ E V[O, TT], ifJ(t) = ifJ(t - 0)
TT 0

Returning to B, it follows that

for t E (0, TT).
(2.2)

(n = 0, 1,...).

Putting ifJo(t) = ifJ(t) ~ st, we know from the summability that

(n - (0), (2.3)

whenever bn E qo, TT] satisfies (1.5), (1.6) and (1.7).
Consider an arbitrary Cn E qo, TT] satisfying

sup ICn(t) I = 0(1),
tE[O,7t]

s: I cit)1 dt - ° (n - (0).

Since the kernel bn + Cn satisfies (1.5), (1.6) and (1.7), it follows that

(n - (0).

If one uses Cn to approximate the characteristic function of a single point,
one sees that ifJo(t) is continuous on [0, TT]. If one uses Cn to approximate the
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characteristic function ofa nonoverlapping union of finitely many intervals of
small total length, one sees that (jJo is absolutely continuous on [0, 7T]. In
particular, with (jJ'(t) = ~(t) E L[O, 7T], (2.1) and (2.2) give

2 f7T 12a- . cos vt ~(t) dt = 0
7T 0 av

Furthermore, (2.3) takes the form

for v = 0,
for v ~ 1.

( bn(t) ~o(t) dt = 0(1)

Next, we show that

ess sup I ~o(t)1 --* °
tE[O,B]

(~o(t) = ~(t) - s).

(8 --* +0). (2.4)

We restrict ourselves to kernels bn(t) ~ °and may, therefore, assume that
~o(t) is real valued. If (2.4) fails, we may assume that E > °and 8n --* +0
exist such that ~o(t) > E holds on a subset En C [0, 8n] with positive measure
mn . Let Xn be the characteristic function of En and dn(t) = 7TXn(t)/(2mn).
Then dn satisfies (1.5), (1.6) and (1.7), but ~ dnCt) ~o(t) dt > E. Now we
approximate dn by continuous functions bn ~ °and obtain a contradiction.
Hence (2.4) holds, and by changing ~o possibly on a set of measure zero we
ensure ~o(t) --* °= ~o(O) (t --* +0). This concludes the proof of Theorem 2.1.

3. POSITIVE (MONOTONE) METHODS

Let A = (anv) be a matrix with the properties

anv --* ° (n --* 00, v fixed),
00

L anv --* I
v=o

(n --* 00).
(3.1)

It follows from (3.1) that A defines a regular sequence-to-sequence transfor
mation. We associate with it a series-to-sequence method B = (bnv) defined
by

(n, v = 0, 1,...). (3.2)

The matrix B satisfies (Ll) and (1.2), and also

(n fixed, v --* 00). (3.3)
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t tn.
From L.~o an.s. = -Stbn.t+1 + L.~o bn.a., Sn = L.=o a., we obtam, for
every C1-summable series L a. (e.g., for every series of Fe or FL ), the relation

en en

I an.s. = I bn.a. (C1)
v=o v=o

(3.4)

since Stbn.kH -- 0(C1) because of (3.3). In (3.4), the C1-summability of one
series implies that of the other. Thus, for those series, Sn -- S(A) is equivalent
to L a. = S (B) including the applicability (C1) in both cases. A method A is
called Fc-effective (resp. Fceffective) if the summability field (A) contains Fc
(resp. FL ) with S = cp(O) , which is equivalent to B being Fc-effective (resp.
Fceffective). By Theorem 1.1 we see that A is Fc-effective if and only if

I: Ibit)1 dt = 0(1),

where, in view of (3.2) and (3.3),

(3.5)

en ~ sin(v + W
bn(t) = !bno + I bn• cos vt = L. an. ---"--'--:=':-

v~l v~o 2 sin !..
2

for t E (0, 7T], n = 0, 1'00' . The necessary condition (1.10) can be written in
the form

I
k 1 k+m-l I

L: m L: an. :'( M
m=l v=k-m

(n ~ 0, k ~ 1). (3.6)

A method A will be called monotone, if in addition to (3.1), a sequence of
integers V n ~ °exists such that

If A is monotone, then for n -- 00,

for v t. (3.7)

en

L: I v - Vn II Llanv I = 0(1) (Llanv = anv - an.vH)·
v=o

(3.8)
This follows immediately from

K K

L: I v - V n I I Llanv I = I (v - vn) Llanv
v=o v=o

k K

= -vnano + I anv - (K - Vn) an.KH :'( Lan.
1'=1 1'=1
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4. ORDER SUMMABILITY

In this section we shall prove an estimate for the partial sums of the series
belonging to FL , and this result will lead to the definition of summability L 1*.

THEOREM 4.1. Let L an E FL , and let Sn = L:~o av • Then

1 n (n+l )
n + 1 - m v~ (sv - <p(0)) = 0 1 + log n + 1 - m

as n ---+ 00, uniformly for 0 ~ m ~ n.

Proof A short calculation shows that

n

Smn = L (sv - <p(0))
v=m

(4.1)

(4.2)

1 f11 sin(n + 1 - m) ~ sin(n + 1 + m) ~
= - (<p(t) - <p(0)) ----------dt.

no '2 t
sm 2:

It follows from (4.2) and I sin Y I ~ min(1 y I, 1), 11sin (tI2) ~ nIt (0 < t ~ n),
that

I Srnn I
n(n + 1 - m)

n + 1 + m f1/(n+l+rnl f1/(n+l-rnl dt
~ 4 I <p(t) - <p(0)1dt + I <p(t) - <p(0) I "2

o l/(n+l+rn) t

1 f11 dt+ n + 1 - m I <p(t) - <p(0) I f2 .
l/(n+l-rn)

(4.3)

Introducing by partial integration the function p(t) = (1lt) f~ I <p(t) - <p(O)Idt
the right side of the inequality (4.3) is at most

p(n) f1/(n+l-rn) p(t) 2 f11 p(t)
---,------'---'-cc--'----:- + - dt + -2 dt.
n(n + 1 - m) l/(n+l+rn) t n + 1 - m lI(n+l-rn) t (4.4)

If n ---+ 00, n - m ---+ 00, then (4.4) is (uniformly)

( n+l+m) ( n+l)
0(1) + 0 log n + 1 _ m + 0(1) = 0 1 + log n + 1 - m .
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If n -- 00, n - m = 0(1), then (4.4) is (uniformly)

(
n + 1 )0(1) + o(log n) + 0(1) = 0 1 + log n + 1 _ m .

This proves (4.1).
A sequence {sn} is called L1*-summable to s, we write Sn -- S (L1*), if

1 n ( n+1)
n + 1 - m v~ (sv - s) = 0 1 + log n + 1 - m (4.5)

as n -- 00, uniformly for 0 < m < n. Using this definition and denoting the
summability field of ~* by (L1 *), Theorem 4.1 reads FL C (~*). We note
that Sn -- S (L1*) implies Sn = o(log n) (take m = n), and Sn ---+ S (C1)

(take m = 0).
We generalize the foregoing definition. Suppose that g(t) is defined for

t E [0, 1) and that g(t) ~ O. Then a sequence {sn} is called order-summable
[g] to s, and we write Sn ---+s [g] if

n + : - m v~ (sv - s) = a (1+ g (n ~ 1)) (4.6)

as n -- 00, uniformly for 0 < m < n.
It follows from (4.5) and (4.6) that order-summability [log 1/(1 - t)] is

summabi1ity L 1*. Furthermore, it follows from (4.6) that Sn -- S [g] implies
Sn - S = 0(1 + g(1 - l/(n + 1))) and Sn -- S (C1).

5. EQUIVALENCE

In this section we shall show that order summability can also be expressed
as ordinary summability by a triangular and monotone method. This obser
vation is of theoretical interest (see Introduction). From a technical standpoint
it is in most cases more convenient to use the notion of order summability
rather than the corresponding matrix method.

THEOREM 5.1. Given g, there is a monotone and triangular method A *
which is equivalent to [g].
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Proof Define for 0 ~ m ~ n, v ~ 0:

1 g (nTr)
n+l l+g(n~l)

___1__ g(nTr) + 1

n+ 1 1+ (_m_) n+ 1- m
g n + 1

if m ~ v ~ n,
if v> n.

In particular,

if 0 ~ v ~ n,

if v > n.
(5.1)

Clearly, a;m(v) ~ 0, L:o a;m(v) = 1, and for v t and arbitrary integers
Vnm E [m, n],

Furthermore, a;m(v) -+ 0 for fixed v, n -+ 00 uniformly in 0 ~ m ~ n.
Now arrange the pairs (n, m) in lexicographic order so that (n, m) is the

k-th pair, where k = n(n + 1)/2 + m. This defines atv = a;m(v), and the
matrix A * is monotone and triangular. Obviously, L:~o atvsv -+ 0 is equivalent
to

n g(n~l) 1 nL a;m(v) Sv = ---'--- ---1 L Sv
v~o 1 + (_m__) n+ v~o

g n + 1

1 n

+ 1 L Sv ---+ 0n -m v=m

as n -+ 00 uniformly in 0 ~ m ~ n, and in view of (5.1), both are equivalent
to Sn -+ 0 [g].

6. IMPLICATIONS

In conclusion, we discuss some implications of the foregoing results.
For monotone methods, (3.6) implies (3.5), as can be shown by direct

estimates. Thus, for monotone methods, (3.6) is equivalent to Fc-effectiveness.
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However, we shall show in the succeeding paper that (3.6), for monotone
methods, is also equivalent to A J L1*, which implies that A is even Fe
effective. It follows that,for monotone methods, Fe-effectiveness is the same as
Feeffectiveness; so we can simply speak ofeffectiveness (without qualification).
Also it follows that, for monotone methods, effectiveness is equivalent to
the inclusion A J L1 *. Here we may replace L 1* by the equivalent method A *
(Theorem 5.1). Hence, among the monotone effective methods A there is a
weakest method A *, in particular nA = A * ~ L1*. Since L1* is FL -effective,
the class Fe cannot be characterized by monotone effective methods only.

We shall also show in the above-mentioned following paper that the
inclusion A J L1* (with a regular, but not necessarily monotone A) stems
from the following condition which is weaker than (3.6) for monotone
methods: For a suitable sequence of integers V n ? 0,

where

g*(t) = t (I + log 1 ~ J
t

g*(t) = 1 + log --1t-

for t E [0, 1),

for t > 1.

(6.1)

Thus, this condition still implies Fe- and Feeffectiveness, as was already
observed for V n = n by Nagy [6], and, in general, by Karamata and Tomie [4].

Karamata [3] has shown that a monotone Norlund mean N p is effective if
and only if C. C N p for some € > 0. Thus, n N p = no:>o Co:, when we
allow all monotone and effective Norlund methods. In the following paper
we shall give another proof of this result. From the discussion of Wiener-type
methods it will be apparent that monotone effective methods A exist satisfying
L1* CAe no:> 0 Co: , with strict inclusion on both sides. Therefore, the set of
all monotone effective Norlund methods does in no way represent the class
of all monotone effective methods. A similar result is true for monotone
effective arithmetical means M p : nM p = C1 .
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